
Accessibility: Implementation in Code,
part 1/2

Tero Pesonen / Siteimprove

Helsingin malli

Contents

Tailor-built elements
• Aria—definitions

• Navigation order

Requirements for specific element types
• Button Accordion/popup Menu button

• Tab list

• Modal

• Form controls

Demo page: http://tpesonen.net/Demo/

http://tpesonen.net/Demo/

Additional material

Menu buttons and menu implementations
• Document: Module 4 / ”Menu Button Implementation Notes”

• Demo page ”Buttons” tab Menu Button

Tab List:
• HDS –notes (link)

• Document: Modules 3 & 4 / ”Tab List Pattern: Design and Implementation”
- Additional discussion on the design pattern that supplements HDS and this document

• Demo page Tab list and Page Setup

Modal:
• Document: Modules 3 & 4 / ”Modal Pattern"

• Demo page ”Buttons” tab Modal Button

Tailored HTML elements

When implementing non-standard elements, developers must
ensure that the element:

1. Describes its name, role and value/state to assistive technology

2. Is keyboard focusable, if interactive, and

3. Can be activated and interacted with by keyboard

4. Presents either the system default focus indicator or one that meets
WCAG 1.4.11 & 2.4.7 contrast requirements.

5. Remember, too: Should the element trigger dynamic content changes
(pop-up, menu button), or be a complex element with sub parts
(calendar, navigation menu), its internal focus and navigation order is
set according to the service design specification, that is, is not random.

Aria techniques

Assign the HTML tag with
• Name

• Role

• Value

Used for non-standard HTML elements
• HTML tags like <button>, <select>, , … need no Aria definitions

• But Aria can be used to override standard tag’s properties if necessary

Aria add descriptions, no programmatic characteristics
• Recognized and respected (only) by assistive technology

• Won’t impact visual presentation, or mouse use or keyboard use

Accessible name

SC-visible “label” for the element

Derived from Author and/or Contents names

1. If Author label is given by aria-labelling, Contents labels are substituted for it

2. Aria-label or aria-labelledby name supersede title and ALT

Author: ARIA labelling, or title or ALT.

Contents: Text nodes of a DOM element, combined into one

<button>This is a Contents type name</button>

<input type=”text” id=”input1” aria-labelledby=”input1_label”></input>

Author-type naming:

Accessible name

Aria-label=”…”
• Attributed directly to the tag; overrides textContent on interactive elements

Aria-labelledby=”ID”
• The name is derived from another element’s accessible name (compare <label for>)

Aria-describedby=”ID”
• The name is supplemented with an additional description, derived from another

element’s name

Div or span with only textContent cannot be aria-labelled

Read this

article

Read the srticle

Pop-up dialog

content

<button aria-label=”Help about XYZ”><img

src=“…” alt></button>

Pop-up button: Requires Author type name

<button><img src=“…” alt=“Help about

XYZ”></button>

Admission Programmes How to apply

<img

src=“…” alt=“”>

If an image link has ALT, SC will announce the element as

“image link”. If aria-label is used with an empty ALT, the

presence of an image is not exposed.

<span aria-label=“Current

page:“ class=“…”>How to

apply

NOTE: This won’t work!

1. Element has only text node(s)

aria-label has no effect

2. Aria-label will replace text nodes

when applied

Role

Role=”…”
• Button

• Tab, tablist, tabpanel

• Listbox, combobox, option

• Radio, radiogroup

• Region, main, banner, contentinfo, navigation

• Jne.

<div id="radiogroup1" role="radiogroup" aria-labelledby="radiogroup1-label"

class="RadioGroup">

<span id="radiogroup1radio0" role="radio" class="RadioButton" aria-

checked="true" tabindex="0">First Radio Button

</div>

State / value

Required for instance in
• Buttons that open/close a menu, accordion, pop-up

• Radio button and checkbox checked status

• Tab, in a tab list, is selected/open or not-selected

• Etc.

Aria techniques
• Aria-expanded

• Aria-selected

• Aria-checked

• Aria-pressed

• Aria-current

• jne…

<button aria-pressed=”true” class=”ToggleButton”>

Toggle button</button>

<span role=”checkbox” aria-checked=”false” ...

Keyboard navigation and tabindex

Tabindex attribute
• 0 : the tag is focusable

• -1 :

- Unfocusable by keyboard, but

- The tag can be focused programmatically (JS: DOMNode.focus();)

• >1 : Altered focus order (not usually needed or recommended)

If the tag is 1) interactive, but 2) has been created by a span, div or other
non-interactive HTML tag, it must be assigned tabindex=0.

Adjust navigation and focus order by DOM order, not by tabindexes

Visualizing keyboard focus

If the element or focus indicator is tailored, developers must ensure it is
shown and has sufficient contrast (3:1) WCAG 2.4.7, WCAG 1.4.11
• TAB key focus hops along the page (1)

• Default/system native indicator always passes WCAG

• Mouseover—”focus” (2) not mandatory; contrast unspecified by WCAG

CSS
• :focus state

• E.g. outline or text-decoration properties

2

1

Reading/focus order

Determines the order in which individual elements on the page are
observed by keyboard navigation and assistive technology
• Keyboard navigation: WCAG 2.4.3 Focus order

• Screen reader: Additionally WCAG 1.3.2 Meaningful sequence

Logo

(img + link)

Search

(text)
Input field

Search
(button + img)

50 pcs. of

elements

Updated

1.8.2020

(text)
Page ends

1 2 3 4

54

1

2 5

6

7

10

11

12

13

16

17

2021

Pay attention to, for
instance:
• When using columns

• Link and navigation segments
that lie parallel to main content

• Submit and other buttons at the
end of a form (no relevant
content should be placed after)

• Tabs and tabpanels

• Menus, pop-ups placed in
navigation order immediately
following their trigger buttons

• If a form presents dynamically
added/removed controls, they
should appear after the trigger
point, if possible

Button

Corresponds to: <button> tag
• Submits a form or transits between form pages

• Shows/hides a menu, accordion, pop-up, etc.

• Triggers a modal

Compare to links (anchor tag), which
• Transfers focus

• Opens a new URL

The purpose of the element dictates its role as button or link
• Visual styling should be applied independently

Exception: Tabs in a tab list contain “tab” elements, not buttons.

Buttons may comprise text,

text and graphics, or only

graphics (glyphs, symbols)

Ghost--button

Log in = button, Register = link (opens a new page)

The icon when focused or clicked

dynamically alters the page content

(shows a pop-up) The icon functions as

a button, not as a link or mere image

Basic button (“action button”)

Role=”button”

Tabindex=”0”

KeyboardEvent handler (keypress) can be activated by Enter
(event.keyCode === 13 || event.key === Enter)

Screenreader: keys (e.g. “space”) need no keyboard handlers, as
screenreaders also send a click event.

Simple button

Accordion

Standard button is supplemented with
• aria-expanded=”true”/”false”

- NOTE: Expanded status is assigned to the button, not the content that is expanded!

• Aria-controls=”ID”, where ID refers to the expanded content

Accordion == Pop-up != Modal (see later slides)

<span id=”…" class=”…" role="button" tabindex="0” aria-expanded=”true”

aria-controls=”accordion-panel”>Accordion button

Accordion: DOM Structure

Content typically presented as div or section
• Sibling to the button, not a child

• Follows immediately in navigation (DOM) order to the button

• Recommended: Has a matching CSS display value (e.g. block) as its trigger button

Accordion content can be demarcated by role=region or <section>

A
ri

a
-c

o
n
tr

o
ls

• Role=”region”

• Aria-labelledby=”buttonID”

• Or Aria-label=”Accordion content description”

Menu button

Implementation similar to Accordion

Additionally: Give the tag Aria-haspopup=”true”

• Signals: “This is a menu kind of dynamic content”

 Screen readers describe the value in a standard fashion

• Value remains unchanged when the menu is open/closed

Menu can encompass submenu(buttons)/accordions

<span id="demobutton3" role="button" aria-haspopup=”true" tabindex="0"

aria-expanded="true" class=”…" style=”…" aria-

controls="demobutton3_panel"> Menu Button

Toggle button

Button, which has Aria-pressed=”true”/”false”

Corresponds semantically to a checkbox.

Tabs

Divides content into parallel but optional segments both semantically and
visually
=> Has to be defined correctly for assistive technology

Proerties
• All of the tabs are active and can be opened

• Each tab provides categorically similar content

• Opening a tab will only alter content, not context not a link

• Only one tab can be open at a time, and one tab is always open

A section can be a tab set even though it appears visually not like so;
conversely, content that look like tabs can, in fact, function as links.
• WCAG 1.3.1 Info and relationships

Information about a location: Tabs segment the information into
categories that when displayed occupy a shared space

Tabs: Aria definitions

Tab list: role=”tablist”
• Aria-label can be added

• Individual tabs: (n pcs.): role=”tab” (NOT role=”button”)

- Aria-controls=tab panel ID

- Aria-selected=”true”/”false”: Is the tab currently “open”?

Tab panel: role=”tabpanel”
• Aria-labelledby=tab, which presently has aria-selected=true

Tabs: Aria definitions
A

ri
a

-c
o
n
tr

o
ls

a
ri
a

-l
a
b
e
lle

d
b
y

Aria-selected=”True”

Tabs: Focus order and keyboard
navigation
Three approaches

1. Tabs as independent, focusable “buttons”
• Each tab is focusable individually by TAB key in the DOM

• Implemented as if a list of buttons

• Many users find this intuitive on the web

2. Only tablist is focusable (W3C recommended)
• The tablist is TAB-key-focusable, not individual tabs

• User moves focus within the tablist with left/right arrow keys once tablist has been
focused with a TAB key

• Activating a tab will open it

Tabs: Focus order and keyboard
navigation
3. Selection follows focus (also W3C recommended)

• Like method #2, but:

• When the user moves focus within the tablist with arrow keys, each tab opens
automatically when focused

• Implemented like a radiogroup (see later slides)

See: http://tpesonen.net/Demo/Tablist/
• Main navigation as a tablist method #2

• Tablist tab shows also method #3

http://tpesonen.net/Demo/Tablist/

Tailor-built form controls

Checkbox
• Role=”checkbox”

• Aria-checked=”true”/”false”

Radiobutton group
• Role=”radiogroup”

Radio button
• Role=”radio”

• Aria-checked=”true”/”false”

Remember to add where necessary
• Tabindex=”0”

• Keyboard focus indicator

• Keyevent handlers

Native input type=”radio” with fieldset

and legend is significantly easier to

implement than an aria radio group.

Native HTML elements are accessible

“out of the box”.

Radiogroup: Focus management

When a radio is in a checked state, it has
• aria-checked=“true”, otherwise aria-checked=“false”

• Tabindex=“0”, otherwise tabindex=“-1”

• If the group does not contain a pre-checked radio, the first radio has tabindex=“0”.

When a radio is currently focused (CSS :focus state from onfocus event), and the user
presses up or down key
• Assign the current radio aria-checked=“false”

• Assign the current radio tabindex=“-1”

• Assign the targeted radio aria-checked=“true”

• Assign the targeted radio tabindex=“0”

• Move focus to the target radio (JS DOMNode.focus())

If a click event occurs, repeat the above
• Group retains keyboard-navigatable, coherent state

Modals and pop-ups

Dynamic content can be implemented
as either a pop-up or modal

Distinction is crucial. Impacts
• Keyboard navigation

• Screen reader use

=> Use-scenario design

Must be heeded in implementation
• Designer decrees which type the

implementation should be

Pop-up dialog

content

Map type

Default

Satellite

High-contrast map

Cancel Select

Pop-up

Corresponds logically to an accordion
• Part of the page normal navigation order

• Pop-up can be closed or open at any given time

• If the button that triggered the pop-up remains visible, the pop-up requires no closing
button

Often triggered by an icon
• Pop-up opens when the icon is clicked or moused over

Heading may suit poorly: Consider, at any rate, adding a region definition

Pop-up & WCAG 1.4.13

If an element triggers a pop-up when focused or hovered with a mouse:
• The pop-up can be closed without removing focus from the trigger

- Exception: Error messages, and situations where the pop-up will not cover or replace
other content

• The pop-up area can be focused without the pop-up disappearing

- That is, even if the trigger loses focus/hover, in this case the pop-up remains visible

• The pop-up stays visible till the user closes ii or its content is no longer relevant

Example: Popups to which the criterion

applies:

Link: University of Helsinki

donations form

https://hy-yhteistyo.secure.force.com/helsinki/DonationPage

Modal

Captures focus within the modal
• Focus is transferred automatically inside the modal when the modal opens

• Focus cannot be removed from the modal area

• The modal relinquishes focus back to the page DOM as the user closes the modal

Modal constrains the user A mechanism for guided use scenarios
• The user should acknowledge information or complete a task

• Limiting the amount of content on a page (pop-ups can remain open, modals not)

• Preventing focus order issues

Implementation requires the correct techniques
• Both keyboard and SC focus must be bounded by the modal region

Also, modal description and labelling requires attention

Opening a modal

The modal trigger button is a simple action button (because context change, not content
change) and so needs no state attributes (No: aria-expanded or aria-pressed)

1. Assign the modal wrapper (e.g. div) the following attributes (WCAG 1.3.1)
• Role=”dialog”

• Aria-modal=”true”

• Aria-label=”Modal name”, or aria-labelledby=element within the modal that names the modal (e.g. heading)

• Optional: Aria-describedby=a longer description of the modal’s role or function: useful especially if focus is not sey
at the beginning/”top” of the modal

2. Set focus either on
• The first interactive element of the modal, or

• tabindex=-1 attributed first non-focusable element in the modal

3. Make sure that focus cannot escape the modal

4. Remember that the user must be able to close the modal from a control inside the modal
(e.g. a button) (related: WCAG 2.1.2)

Modal: Confining keyboard focus

A simple solution example: Barrier divs

Insert empty-of-content div tags as the first and last elements of the
modal

Set for each div
• Tabindex=”0”, so that the div can accept a keyboard focus

• Onfocus event, which transfers focus to the first or last proper interactive element
inside the modal

• aria-hidden=”true” attribute (to hide the “barrier” from screen readers)

• Optional: Set :focus outline: none to avoid visual flicker

When the modal closes, return focus to the element (often a button) that
triggered the modal.
• Note: Browsers will not do this automatically!

Modal HTML

”Tab barrier” –elementit

Kiitos!

