
Accessibility: Implementation in Code,
part 2/2

Tero Pesonen / Siteimprove

Helsingin malli

Contents

Web Forms
• Structure

• Error handling

• Composite elements

Aria live announcements

Aria current status

Additional material

Web Forms
• HDS:

- Form guidelines

- Form implementation with error checking

• Demo page:

- Form error checking and focus management examples

Aria live & Aria current
• Demo page:

- For a list of example patterns, see Information  Contents

- Static Live Regions: Notification, Log, Combobox

- Non-static live regions: Spinner

Tailored HTML elements

When implementing non-standard elements, developers must
ensure that the element:

1. Describes its name, role and value/state to assistive technology

2. Is keyboard focusable, if interactive, and

3. Can be activated and interacted with by keyboard

4. Presents either the system default focus indicator or one that meets
WCAG 1.4.11 & 2.4.7 contrast requirements.

5. Remember, too: Should the element trigger dynamic content changes
(pop-up, menu button), or be a complex element with sub parts
(calendar, navigation menu), its internal focus and navigation order is
set according to the service design specification, that is, is not random.

Forms: Structure

A long form when divided into pages or steps/phases is
often easier work with for all users
• One category or theme per page/phase

Show steps and progress
• Specify how the progress is described to assistive technology

Structure each form page with headings
• Headings can be more numerous than on normal content pages

• Heading per topic  Adds also visual documentation

Make use of HTML Fieldset sections and legend titles
when building control groups

Submit/next page button should be the last element of
the form

Main

Footer

Banner

Visit us in social media

• Facebook

• Twitter

• Instagram

Contact info

• Address: ….

• Phone num: …

• Email: …

Form page heading

Pop-up –help icon

Fieldset + Legend

Group of controls

Form phase

/ page

(landmark)

Form section heading (”Personal information”)

Painike

Submit/Next button (not in the footer!)

Forms: Navigation order

Typical focus order
• Form navigation or progress  Form segment  H1  Help section heading  Help

section  Form section X heading  Control groups, from left to right, top to bottom;
help resources available before the control  Next/submit button  Previous (and
other) buttons.

Pay attention to situations where content is added or removed
dynamically from a form page
• For instance, checking “I am currently employed full or part time” brings additional

questions to a form.

• New content should be added ahead of the present focus point

Content that is part of the form should normally not be palced after the
submit button
• “I have read the…” checkbox before the button

• Important “small print” also before the button or linked at from within the form

1

2 5

6

7

10

11

12

13

16

17

2021

1

2

5

6

7

8 9

10

11 12
13

14

16

15

Elämäntilanne—lomakesivun avaaminen:

Kohdistus voidaan siirtää suoraan Elämäntilanne—

otsikkoon koko sivun alun sijasta

Kohdistettu elementti poistetaan: Mihin

selainkohdistus tulisi siirtää roskalaatikko—

painikkeen aktivoinnin jälkeen?

Error checking

Demo form: http://tpesonen.net/Demo

WCAG 3.3.1 & 3.3.3: Error identification and Error suggestions

If the form identifies errors in user input, the user must be informed
• Where in the form the error is (a control, a group of interacting choices, etc.)

• The error type or what the error situation entails (invalid value, missing value, etc.)

The error must be observable non-visually
• Use of colour alone insufficient

• Asterisk (*) without explanation insufficient

The error message should not disappear unexpectedly
• E.g. a pop-up that only briefly displays the error location is difficult to spot with assistive

technology.

http://tpesonen.net/Demo

Error checking

Error checking can be
• Static

• Dynamic

• Hybrid of static and dynamic

Static: Errors are reported on a submission/page transition attempt  The
user is precluded from advancing with the form till the errors are fixed

Dynamic: Form controls check their input value immediately after or even
during input and produce an error message  Submission possible only after
no errors remain.

Hybrid: Some errors may be checked in a static way while other issues, such
as formatting, are checked immediately, dynamically

Static error checking

Error report / board printed in the beginning of the form/page
• Includes all the errors found in the form section

• Described with a heading + possibly a region

Focus in transferred automatically from the button to the
error report after a failed submission attempt
• Target: Heading

Errors are listed and written out clearly

Each error is coupled with a link that points at the control or
group whose input is causing the error
• I.e. internal link

Dynamic error checking

User input is checked a) during or b) immediately after the input is
completed

Implementors need to be informed whether A or B applies.
• A and B approaches call for different ARIA implementation techniques and navigation

order issues that need to be accounted for.

Error messages are printed in the control’s immediate vicinity
• Recommendation: Immediately after but before the next control

Error messages remain visible till the control is re-focused or the error is
amended

Aria-live and role=“alert” techniques should be applied
• SC users receive a notification even as the error is not focused

Combining the error checking modes

A form may provide both static and dynamic checking

Example: Some of the inputs are checked dynamically
• Date format, social security number format, postal codes, etc.

• But more complex dependencies between inputs (one input requires
that another one is provided, too, or is in a specific format) are
evaluated only on submission

• Benefit: Aids the user in inputting correct data, and limits the number of
static error messages as basic formatting issues need not be fixed
later.

• Befits most forms

Aria—live

Changes to a live region will be announced by a screen reader even when the

region is not focused

Aria live region is attributed a HTML tag (div, span, li, …)

• Assistive technology will monitor the region for changes

• Developers can specify what type of changes the region records

• The DOM can host multiple Live regions at a given time

WCAG requirements (WCAG 4.1.3)

• Only a region to which focus is not transferred needs a live region (is e.g. not a modal)

• Live regions should only monitor relevant content changes

• Routine/known content updates if made live regions will unnecessarily burden the user

(News headlines carousel, “weathar now” frame, etc.)

Aria—live: Politeness

Sets up a live region

Permanent, but has to be set prior to the first change to the region

Aria-ive=”politeness”
• Polite: AT will notify the user when its synthesizer is free from other tasks  queued

• Assertive: AT will interrupt other tasks and speak out the
announcement without delay. Use only when necessary.

• Off: Live region inactivated  Can be turned back on

<div class=”MessageArea”>

<ul class=”MessageList” aria-live=”polite”>

</div>

<div id="log" class="Log" role="region" aria-labelledby="h2_log"

aria-live=”polite"div>

Aria—live: Attributes

Aria-relevant=[parameter list]:What changes should be heeded?
• Additions: Content that is added to the region

• Removals: Content that is removed from the region

• Text: Respond to textContent changes only

• All: Any kind of chnage

• Note: By default, aria live regions have aria-relevant=”additions, text”, so the attribute
usually need not be set

Aria-atomic=true/false: Is the entire region announced when a change
occurs, or only the changed part of the region?
• By default, aria-atomic=”false”

<div class=”…” aria-live=”polite” aria-atomic=”true”>

50hakutulosta</div>

Example: Should only the part of the string which indicates the number of results change (50), a

screen reader would only announce ”50”, ”35”, etc. if aria-atomic=”false” or aria-relevant=”additions”.

Using aria-atomic=”true”, or combining the result + number into a single string, solves the problem.

The combobox hosts a live region that is visually hidden. Beenfits:

• Combobox can provide SC with additional information that need not be exposed visually

• Example: ”5 results found”, ”no results found”, ”Helsinki selected.”

• Combobox creates and removes the live region on focus and blur events.

<div

id="combobox1_live_region”

aria-live="assertive”

class="LiveRegion">

2 Results found.

</div>

Aria-current (WCAG 1.3.1)

When a UI element signals by its visual style that it corresponds to a present or
active status, aria-current can pass the same information to assistive tecnology
(WCAG 1.3.1 Info and Relationships)

Aria-current=
• ”page”: breadcrumb current page, navigation menu current page, …

• ”step”: presently open/active phase in a process. E.g. form step, wizard step, etc.

• ”date”: current date (not necessarily currently selected date)

• ”time”: current time

• ”true”/”false”: generic “current” status, or none.

Aria-current=”step”Aria-current=”false” Aria-current=”false”

Aria-current=”page”

Aria-current=”true”

or ”page”

Aria-current=”page”

Aria-current=”date”

Aria-pressed=”true”

Aria yhteenveto: Valitun tilan
osoittaminen

Aria-selected

• Role=”tab” (sisältyy role=”tablist”—elementtiin)

• Role=”option” (sisältyy role=”listbox”—elementtiin, joka vastaa HTML Select—tägiä)

Aria-checked

• Role=”checkbox”

• Role=”radio”

Aria-current

• Vallitseva sivukonteksti

Aria-pressed

• Role=”button” (kytkinpainike, toggle—button)

Aria-expanded

• Role=”button” (haitari, valikko)

Aria-label=”Vapaamuotoinen kuvaus, jos vakiomuotoinen tila-attribuutti ei sovellu”

