
Helsingin saavutettavuusmalli

Helsinki Model for Accessible Service Design

Link Box Pattern: Notes on technical implementation

Tero Pesonen

Siteimprove

Version: 4th March 2021

Link Box Pattern

Examples

Examples can be found on the demo page: http://siteimprove-accessibility.net/Demo/Page/

Pattern overview

The linkbox is not a specific element, but a service design pattern that is commonly found on
modern web sites. There is an increasing need to provide graphical, card-like clickable areas that
function as links to a single URL, even as the card or box combines multiple content elements
within – an image, a title, a short blurp, even tags. These kinds of card do, of course, cater
naturally to a mobile-first design and touch input.

Typically, such links can be found in both desktop and mobile views in search result pages and
topic pages, and increasingly also on main pages where new itemss, blog posts, and articles are
collected as grids of clickable boxes.

Although the pattern can be implemented in a multitude of interpretations, the "boxes" discussed
here are specifically of the kind functioning as singular link. Boxes that rather contain links or
clickable elements with a multitude of functions, are not link boxes but traditional region
containers that are subject to different implementation considerations. They are, of course, a
good deal easier to make accessible given that there is no need to bind all of the content to a
single link.

The 'box' discussed here usually comprises at least a title, image, descriptive text or ingress, and a
graphical or textual link. There may be other components, too, and the image or paragraph text
may be missing in some boxes (used within the same web site) depending on the kind of link they
host.

Pattern requirements

In its typical implementation, a link box is challenging for screenreader users. Often, there is either
a single link (anchor) tag which encompasses the entire box — rendering the box very difficult to
navigate, comprehend, and interact with when using assistive technology — or there is a series of
links (title link, image link, text link, icon-as-a-link, ...), all of which point at the same target without
it being clear for a screenreader user whether they do indeed server the same linked target or not.

http://siteimprove-accessibility.net/Demo/Page/

Keyboard users, in turn, may grow frustrated with the number of repeated links inside every box;
or they may face unexpected focus order within the box area.

From these issues follow that the linkbox should have the following properties.

Link Box accessibility properties

1. Both the keyboard (visual) user and the screen reader user perceive only one
link or focusable element associated with the box. This element within the box
element need not be the same for both modalities.

o A keyboard uses when navigating the page with the TAB key will find
the whole box or a given part of it focused. Another TAB press will move
focus off the box and to the next interactive element on the page.

2. The whole box area can be pointer-clicked. The click activates the box link
irrespective of the click point co-ordinates.

3. The box heading may or may not be the link description.

4. The box image can be hidden from assistive technology as extraneous.
o The image ALT text if exposed will unnecessarily add a duplicate

description for the link, which is already described by the link box
heading and/or the text ingress and/or the anchor element aria label.

5. Non-visual users should grasp that they are dealing with a region which is,
firstly, actionable, but is also, secondly, demarcated very specifically to certain
start and end point, so that multiple boxes can be told apart from one another
and from other page content that precedes and follows them.

These requirements are somewhat contradictory. To that end, no perfect solution to the link box
design pattern exists according to the author’s best knowledge. The approach shown below will
therefore contend with a number of compromises.

Implementation

The link boxes shown on the demo page utilize a <link-box> HTML tag, built as a Web Component
whose properties can be set by attributes within the tag. The example component is one approach
to tackling the link box requirement set; it is by no means the only way to build these
requirements into a single element. Experienced web developers can probably come up with more
elegant and succinct solutions.

Design decisions

• There is one link (anchor tag) per box: This is a normal <a> tag placed within the
box itself.

• The entire box area is clickable: The element is wrapped in a container that has
a click event that executes the link.

• The box is keyboard focusable only in its entirety: The container is set with a
tabindex=”0” attribute that makes it keyboard focusable. Any other interactive
elements within, such as the anchor tag, are, correspondingly, given
tabindex=”-1”. This ensures that they cannot be keyboard focused. Hence, only

the box wrapper seems to receive focus, and so all boxes can be tabbed onto
and off with single TAB key presses.

• Consequently, the container has a keypress event that will respond to Enter.
Like the click event, it will execute the box link.

Users of assistive technology

Screen reader users will perceive the box as:

• A named region or a generic region called a “link box”. This is implemented
with a <div> that has a role=”region” attribute, but a <section> tag could as
well be used now that newer screenreaders describe named sections
consistently even without the region role.

• With or without an image ALT text

• There is a heading (<H> tag) within the box, if the box has a title. This also
exposes the link box as part of the page semantic structure and makes it easier
to discover.

• The anchor tag is exposed as a link to assistive technology. It is placed as the
final element in navigation order inside the container.

o Since there is no text link, the link glyph is used as an image link.

o The link is named with an aria-label. This way, it is not exposed as an
image, but acts like a text link, since the image is an unnecessary detail
for screenreader users.

o The aria-labeling also allows us to easily afford the link an extended
description in case it is an external link or a link to a non-web-page
resource like a PDF document (in which case, according to WCAG 3.2.4,
Consistent Identification, the user has to be informed of the unexpected
deviation of the element type’s usual behaviour on the web site.)

o Optionally, the link box can contain tags that could label the various
categories to which the linked topic pertains. Adding these will increase
the amount of content as well as the complexity of the element, so if
tags are truly needed, one should consider whether a link box actually
suffices or whether a traditional region with multiple functional parts
would fit the use case better.

 The tags can be of text or image. Image tags are described for
screenreaders as a single group in lieu of being presented as
individual images, to keep the amount of content in the box as
small as possible and hence the element as light as possible for
assistive technology users.

 Text tags. in contrast, are exposed individually but are wrapped
inside their own “Tags” region within the box. This is done to
show an alternative pattern to the above.

 Many other approaches could be used as well.

Limitations

The design does impose a number of compromises that impact screenreader users.

Most importantly, the entire link box, not just the link within, remains clickable also to
screenreaders. This is unavoidable, as screenreaders do send also a click event even when they are
used by a keyboard, and there is no way to detect and hence block a screen reader’s click event
specifically in code.

It follows that if the user clicks any non-linked segment of the box with a screenreader, the link
will activate. This is not at all desirable. To mitigate the usability problem, the box
container/region is named specifically with the prefix “Link box”, which should grant it the WCAG
4.1.2 Role determiner. With this naming mechanism, the user upon entering the box should be
better prepared for and aware that the element has an unusual role, namely, that it is interactive
as a whole.

A method one might try to use to solve the problem is to apply a pseudo link element to the
anchor element, and spread the pseudolink across the entire link box, so that no click event need
be assigned to the box container for mouse or keyboard. However, this approach has the same
problem as above: The screenreader’s click will activate the pseudolink if triggered under its
coverage area even when the screenreader has not focused the anchor element from which it is
spread.

Example Component

The tag has the following attributes, with optional attributes in square brackets, to cover the
above properties:

• title-text=".." - Visual title of the box

• [box-sc-label=".."] - Box aria-label for screenreader

• [h-level="..."] - Title HTML Heading level

• link-target="..." - Link URL

• link-sc-label="..." - Link aria-label (mandatory because there is no other
accessible name for the link)

• [img="..."] - Image path (src), if an image is to be included

• [img-alt="..."] - ALT-text for image. If empty or missing, marked decorative

• [text="..."] - Text content to be placed below the image

• [ext-link] - If present, link icon and description are adjusted to point at external
resource

• [shadow] - If present, element built as Shadow DOM, otherwise as normal Web
Component

• [tags=”tag1, tag2, …”] – If present, element built with tags at the bottom; the
tags have to be pre-defined so that their label and possible image is known.

• [tag-style=“image” | “text”]: Sets the tags style; defaults to text.

Note: The Safari browser has multiple issues with Shadom DOM elements. These persist as of
Safari 14.0.2.

• The Web Component tag needs tabindex=”-1” (see example 1: Copenhagen), or
Safari 14 will render the box focus indicator incorrectly.

• Shadow DOM elements also cause the VoiceOver screenreader to completely
break if the element is inserted inside a tag that has aria-modal=true.

	Helsingin saavutettavuusmalli
	Helsinki Model for Accessible Service Design
	Link Box Pattern: Notes on technical implementation

	Link Box Pattern
	Examples
	Pattern overview
	Pattern requirements
	Link Box accessibility properties

	Implementation
	Design decisions
	Users of assistive technology
	Limitations
	Example Component

