
Helsingin saavutettavuusmalli

Helsinki Model for Accessible Service Design

Modal Pattern: Notes on technical implementation

Tero Pesonen

Contact: tero.pesonen at q-factory.fi

Version: 4th March 2021

Modal pattern

For implementation, please take into account all the “Implementation” chapters of this
guide: Screenreaders (chapters 2), keyboard navigation (chapter 3), and pointer
devices (chapter 4).

1. Definitions

The term modal when used in these instructions refers to a web page context that has
the following properties.

Modal features

• A modal is a web page section that withholds keyboard and screen reader focus
within its content area until the modal closes.

• That is, when the modal opens, focus is automatically transferred into its area
on behalf of the user. The user cannot leave the modal but is constrained to
navigate only within its area or "layer" (e.g. a visual dialog, but could be any
shape or appearance).

• When the modal closes (e.g. from a button within the modal), focus is normally
returned to the element that triggered the modal context from the preceding
contextual layer (another modal or the document body). Of course, a modal
can trigger a new page context to load as well.

Modal pattern main Issues

To meet the above requirements, implementors must consider a number of issues; the
main ones are:

• How to manage the focus transitions to/from a modal.

• How to constrain keyboard, screen reader, and pointer devices so that the user
can operate only within the modal.

• How to describe to assistive technology the context change that occurs when a
user enters or leaves a modal.

Other Issues that may have to be considered

The latter point, that of describing the modal to assistive technology, can be addressed
with the correct use of Aria 1.1. techniques. The other points, however, cannot be
managed by Aria, but need to be tackled in code, as they pertain to general web page
dynamics.

Please note that neither keyboard nor a pointer device when used on their own are
considered assistive technology. For this reason, the browser will not honour any Aria
attributes when it receives input from the keyboard or mouse or touch device.

It follows that developers may also have to consider:

• How to deal with mouse/touch/pointer devices when the user "clicks" outside
the modal.

• How to prevent "lower level" content defined with CSS position:absolute from
showing "through" a modal when rendered over the same area.

• How to manage window scroll and other rendering issues

Depending on the context, an existing design system or other library component(s)
may already provide solutions to these problems.

Finally, the most important decision is to determine when and where to use a modal in
the first place in lieu of a pop-up type context that does not confine the user.

This is a service design decision, one that should not be treated lightly. The modal and
pop-up/accordion patterns facilitate different, sometimes even opposite, uses cases
given their propensity to enable and limit the user's progression in different ways.

2. Implementation: Screen readers & Aria 1.1 definitions

Mandatory attributes

From Aria point of view, a modal is a container (e.g. a div tag) with the following
attributes:

• role="dialog"

• aria-modal="true"

When aria-modal=true is used, the screen reader is tasked to automatically limit the
user to the modal area as if it were the only navigable content in the browser window.

The developer, therefore, need not hide other page content from the screen reader in
code, but can rely on the assistive technology to do this automatically. Older
techniques, such as applying aria-hidden to all content outside the modal, need no
longer be employed.

Non-mandatory attributes

Additionally, the container may have the following attributes, which provide assistive
technology with the desired accessible name and automated description(s):

• aria-label=”Modal name”, or aria-labelledby="ID". ID refer to an element that
names the modal.

• aria-describedby="ID". ID refers to an element whose accessible name
describes the modal to the user.

Naming

While different naming patterns befit different use cases, according to WCAG 1.3.1,
Information and Relationships, at least aria-label or aria-labelledby should be
employed for all modals. This can be done by e.g. referencing the modal's first heading
with aria-labelledby.

In a simple modal that accepts a yes/no answer or only informs the user of an
important event, naming and focus management can also be aligned for an even easier
user experience.

For example, aria-describedby can be used to read the dialog content to the user,
making it unnecessary for the code to place the user's focus at the beginning of the
modal or at some 'earlier' secondary interactive element (such a cross-shaped close
button at the top of the dialog). Instead, the focus can be placed on the preferred
button, which permits the user to make the choice the modal requests without having
to navigate and peruse the dialog content -- a non-trivial task for a screen reader user.

Modal with Aria attributes

<div role="dialog" aria-modal="true" id="example-modal" aria-

labelledby="example-modal-h" aria-describedby="example-modal-

description" class="ModalWindow">

<div class="ModalTabBarrier" tabindex="0" aria-

hidden="true"> </div>

 <h2 id="example-modal-h" tabindex="-1">Modal Heading</h2>

 <p id="example-modal-description"> ... </p>

 ...

<div class="ModalTabBarrier" tabindex="0" aria-

hidden="true"> </div>

</div>

3. Implementation: Keyboard focus management

While the above aria techniques will cater to the screen reader, they will not address
keyboard navigation that takes place without assistive technology (that is, when one
browses the web page using the 'TAB' key and interacts with focusable elements with
Enter/Space and arrow keys.) Nor will the Aria attributes impact non-assistive pointer
devices (mouse, touch).

There is no one right technique to manage keyboard focus in modals. The
implementation is up to the developer and library/framework being used. That said,
the demo page shows a simple and easy to adopt method that should work in most
situations. It is based on TAB barriers / guards, and is implemented as follows.

Tab barriers: algorithm

1 Place two TAB barriers in the modal container as its very first and very last
elements, respectively. Make sure no other content will be appended before or
after the barriers.

2 Assign each tab barrier with:

• Onfocus event listener

• Tabindex = "0" attribute

• aria-hidden="true" attribute

3 Define each barrier's onfocus event as follows:

• Find the first and last interactive elements (that is, keyboard focusable
DOM nodes) in the modal area.

• Command the onfocus event to move focus (with e.g. DOMNode.focus()
method) to these interactive elements based on at which end of the modal
the barrier resides; that is, the barrier at the end of modal will when
receiving focus forthwith bounce the focus to the first (true) interactive
element of the modal, and vice versa.

Tab management rationale

The effect of the above arrangement is that the user will be demarcated inside a loop
when navigating forward or backward with the TAB key, unable to accidentally "drop
off" the modal "back to the previous layer". Effectively, this will apply to keyboard
navigation the same limits aria-modal=true applies to a screenreader.

To make sure that the focus will not escape the modal even when the user, say, clicks
the address bar and then TABs back to the page, place similar barriers (e.g. as simple
node copies) also as the first and last elements of document.body. They will similarly
bounce focus back to the modal’s first and last interactive element, respectively, giving
the user the illusion that no other content in the browser window save the modal is
focusable (till the modal is closed and the barriers, of course, removed.)

4. Implementation: Pointer devices

To manage pointer devices, many approaches can be utilised. The simplest method,
perhaps, is to create a "blocking layer", a div with position:absolute that covers the
whole viewport. The modal is then created as a child element of the blocking layer,
which thus prevents outside clicks from focusing "lower layer" elements as they
perforce hit the blocker div.

If the modal can be taller vertically than the viewport, it may be necessary to also scroll
the viewport to the top upon creating the blocker and then prevent document.body
from scrolling until the modal closes, to retain the blocker in place and to allow the
window scrollbars to scroll the modal dialog area instead of the document body
"below."

On the demo page, an additional technique that works without a blocking layer is also
tested: This involves catching all bubbled document.body click events and then
examining, based on the source of the element, whether that click originated from
within or without the modal dialog. With this knowledge, one can either block the
event or pass it through, effectively blocking clicks from outside the modal.

This examination can be done by ascending the DOM tree from the event trigger node
and checking which of the two, the modal container or the document body, comes up
first.

Of course, one has to remember to remove the document.body event listeners when
the modal closes, so the blocking layer technique is probably easier to use in most
situations.

This and the other techniques discussed above can be perused in the modal element
source code below; note that the author is not a professional developer, so the code is
meant to be only instructive, not authorative on this topic.

5. Examples

Examples can be found on the demo page:
https://accessibilitydemo.net

https://accessibilitydemo.net/

	Helsingin saavutettavuusmalli
	Helsinki Model for Accessible Service Design
	Modal Pattern: Notes on technical implementation

	Modal pattern
	1. Definitions
	Modal features
	Modal pattern main Issues
	Other Issues that may have to be considered

	2. Implementation: Screen readers & Aria 1.1 definitions
	Mandatory attributes
	Non-mandatory attributes
	Naming
	Modal with Aria attributes

	3. Implementation: Keyboard focus management
	Tab barriers: algorithm
	Tab management rationale

	4. Implementation: Pointer devices
	5. Examples

