
Helsingin saavutettavuusmalli

Helsinki Model for Accessible Service Design

Sliders and carousels: Notes on technical implementation

Tero Pesonen

Contact: tero.pesonen at q-factory.fi

Version: 1st October 2021

Slider and Carousel Patterns

Definition

The slider is a component that collects into a single, scrollable element pieces of content
that are of the same type: Images, video clips, linked product cards, and other sets whose
number is considered too large to be spread out in a static grid layout.

A simple image slider can be found in the screen reader demo page at:
https://accessibilitydemo.net

Technically, a slider could be implemented as a tab list (and a tab list as a slider), but in
practice the two components are used differently: Tabs fit best for a handful of categorically
similar views that differ in the elements they contain, whereas sliders fit for items that may
be any in number yet are structurally identical. In other words, tabs segment page contexts
while sliders segment content within a page context.

A carousel is a slider that can be thumbed through in a loop, that is, it has no fixed end.

Motivation

Sliders may appear simple from usability point of view since they mainly function as content
viewers. Yet, these elements impose a surprising number of accessibility requirements, as
they build on non-standard controls that interact with each other in unusual ways that are,
consequently, not always straightforward to optimize for non-visual or keyboard-only use.

As a matter of fact, the average slider as seen “in the wild” tends to be amongst the most
challenging components for the typical user of assistive technology to interact with. Luckily,
sliders are rarely crucial for using a service, but they do add value that one prefers were
better available to all users.

This document strives to delineate at least some of the common accessibility requirements
that carousels and sliders pose for developers and designers, as well as how to meet those
requirements.

This is a longer document than the other implementation guides, as the element type id
fundamentally more complex. At the same time, one acknowledges that front end
developers today rarely enjoy the luxury of being able to build components like these from
the scratch; often a library is what one must contend with given time limitations. When
having to adapt an existing component, you do what you can. Good luck!

Accessibility requirements: Overview

There are at minimum three key accessibility requirements that a slider or carousel should
meet:

1. The controls (buttons, thumbnails, clickable content panels, etc.) have an (i)
accessible name, (ii) appropriate role, and (iii) state/value defined.

Although a standard requirement for all interactive elements, setting these attributes
may be less obvious in the slider in which parts not only interact in non-standard

https://accessibilitydemo.net/

manner but also comprise untypical subcomponents. What is, for instance, the
semantical role of a clickable thumbnail list, and which sub roles and states does it
host?

2. The keyboard focus order is according to a design; it is not random.

If one builds the element into the DOM simply following its visual layout, one may
end up with an unusual or even unusable order for the slider’s controls when
navigated by the keyboard using tabulator and arrow keys.

3. There is, additionally, a reading order that fosters assistive technology.

The keyboard focus order only applies to interactive (i.e. clickable) elements, not all
content that the slider contains. Assistive technology exposes also those non-
interactive parts (images, texts, content wrappers and panels, etc.) that keyboard
navigation skips.

The order of these other elements therefore greatly affects how screenreader users
perceive and comprehend the element. That is to say, the reading order may dictate
whether the slider is easy or even feasible to use.

Requirement 1: Controls have a meaningful name, role, and value

The pictures below depict such parts as make up the demo page slider and carousel
elements. Compared to the carousel, the slider lacks buttons for switching the image
one at a time, and the thumbnail list will not loop. Most sliders do conform to a similar
structure even as the panel content and control types vary.

Scroll / Switch buttons

Demo

The image switch buttons and thumbnail list scroll “arrows” are defined as <button>
elements. They are not links since they do not transfer the user’s position in the DOM.
The buttons are also named with Aria-label, as they lack (visible) textContent names.

When the slider is scrolled to the beginning or end of the thumbnail list, the arrow at
that end will become inactive (since there is nowhere left to scroll). The element is
then set with tabindex=”-1” and aria-disabled=”true”. The first will prevent the button
from accepting keyboard focus, and the second will inform screenreader users that the

button has an inactive state. When the button again becomes active, the attributes are
reversed.

One could force the button to relinquish its focused state forthwith when it is
inactivated, with the focus moved to, say, the first or last thumbnail automatically. This
would work well for visual users but would render the scroll event difficult to
understand for screenreader users who cannot see where and why the focus jumped.
For this reason, the button will not eject keyboard focus but the user will rather have
to remove it themselves.

General Implementation Notes

• The basic controls of other carousels will also almost always have a button role
as well: Use either a <button> tag or give the element a role=”button” attribute
if it is not natively one (e.g. it is an image or).

• In the latter case, remember to add the necessary keyboard event handlers and
make the element keyboard focusable with tabindex=0.

• When deciding what aria-labels to use, describe the function of the button, not
its visuals (i.e. “Switch to the previous image”, not ”Arrow pointing left”). Also,
avoid geometrical clues: Use “previous”/”next” in place of “left”/”right”.
Assistive technology will not expose web pages after a visual geometry, so left
does not usually “point” in any direction for the user.

• More information is available in the City of Helsinki Accessibility Model training
material.

Thumbnails

Demo

Thumbnails are miniature images which when activated switch the content panel to
show that image. The demo displays five thumbnails at any given time, so even when
the list reaches its end, the thumbnail set only scrolls along so many images to prevent
vacant thumbnail spots.

Technically, the thumbnails are composed as a tab list, albeit one where there is not
necessarily a selected tab displayed (depending on which segment of the list is being
presented at a given time). One can argue, thus, that it is not, as a matter of fact, a tab
list.

Be that as it may, the tablist pattern nonetheless solves a number of semantic
requirements to which the list and content panel must adhere: Firstly, a tablist
denotes the selected image as the selected tab using a familiar Aria-selected pattern.

In like manner, the pattern bestows on the list and its tabs a structured beginning and
end, and lets the user know at which tab the focus is at any given moment. What is
more, each tab can be labelled in a manner that is automatically reflected in the
content panel owing to the tablist pattern’s rules (see the guide for tab lists for more
information). In other words, the tablist prevents one from having to reinvent the
wheel.

There are drawbacks to choosing a tablist as well: The user must recognize the pattern,
and be able to mentally map it against the other parts of the element set in order to

navigate between the tabs and the selected content (panel). This is not
straightforward, as the panel must follow the list in DOM order, not the selected tab
utself. Even experienced screenreader users will have to tread with thought while
operating the slider or carousel.

Finally, for keyboard users the list sports a tailored focus order compared to a standard
tab list. This is to align focus order with the novel condition that the list does not
always show a selected tab; more on this below in its own chapter.

General Implementation Notes

In addition to a tablist, another pattern that would fit for this purpose could be built
like so:

• Each thumbnail is a button with an aria-label describing its number, name, and
possibly also position within the list being shown. E.g. “Image 17:
Mediterranean Vista; number 4 out of 5”.

• Here, you cannot use aria-selected! Only tab-pattern “buttons”, which are not
action buttons, support this status. Instead, you must use aria-pressed=”true /
false”. This defines the elements as toggle buttons that are pressed/on, or
unpressed/off.

• The panel container must be defined with a structural role – e.g. a <section>
tag, or a <div> with a role=”region” attribute. Preferably, it should also have a
name; an aria label, or aria-labelledby=”id” referencing the selected button,
will work.

Other patterns can be constructed as well.

If the carousel lacks a list of this kind and rather uses some other form of a “quick”
selection, one must adjust to the requirements of that structure in a similar fashion. Of
course, a carousel that employs no list is much simpler to build and use, as the
discussion above no doubt strongly hints.

What about using a long “flat” list that is only visually segmented?

Please see notes on using a single unsegmented tab/button list in chapter 3, Reading
order for assistive technology.

Panel Content

Demo

The panel hosts an image and a textual caption segment. For illustration, a number of
labelling techniques are used: There are panels where only the image ALT text is
exposed to assistive technology and the caption hence hidden (aria-hidden=”true”);
there are, also, images that expose both an free-form, more elaborate ALT and the
standard caption; and finally there are images with no ALT text at all.

None of these constructions is correct or incorrect per se. The purpose of the
carousel/slider is what decrees in which fashion its panel content should be described
to assistive technology. There may, for instance, be interactive elements within, in
which case you need to consider not just how the elements are named but also how
they are ordered. See the requirements on focus and reading order for discussion.

General Implementation Notes

• Mark up the content area with a role=”region” or a <section> tag to distinguish
it semantically from other parts of the element set. This region can be named
with aria-label or aria-labelledby.

There are exceptions to this rule:

o A pre-structured card/box can be placed in the DOM as-is, negating the
need for a separate panel container. If you are unsure how to go about
this, use a host container, as it is always correct.

o If you use an existing accessible tab list component to display
slider/carousel items, the panel is already defined and need no
additional semantics. Simply place the item(s) inside the panel.

• If the panel content comprises multiple parts (e.g. an image/video with a
separate caption), consider whether clarity is improved by demarcating such
auxiliary content from the main content using a named region. If, however, the
content is already pre-structured, as in a linked card/box, you can often leave it
as-is to avoid inundating the user with excess semantics.

• If the panel content is interactive (clickable), add either a button or link role to
the item that triggers the action. Do not add the role to the panel container
itself, as its accessible name would then “overwrite” the entire panel sub DOM
and thus render the content difficult to parse with a screenreader.

• Make sure there is an image ALT or button aria-label if the trigger element has
no textContent (is missing an accessible name).

Progress indicator

The demo does not at the time of writing feature any graphical or other indicator(s)
that would depict how far along the list one has scrolled. For a slider (that will not
loop) this may well be useful, and some sliders incorporate a progress bar or similar
visualization adjacent to the list, allowing for a quick view of one’s position in relation
to the list length.

An indicator of such a fashion will likely be added to the demo in the future. For now,
however, the following pattern may serve as a starting point for implementing a
progress bar or a congruent indicator element.

General Implementation Notes

• Give the indicator wrapper element the following attributes and corresponding
values:

o role="progressbar"

o aria-valuenow="selected/displayed segment/item ’number’"

o aria-valuemin="1 or equivalent value to starting progress"

o aria-valuemax="equivalent number to 100% progress"

• Wrap the progress indicator in its turn inside a container that is a live region:
aria-live=”polite”

Now, when you update the progress indicator, give it the respective “valuenow”. A
screenreader user will hear the updated progress as a live announcement and will not
have to find and focus the indicator to learn its status. If, however, that is undesirable,
simply leave out the live region.

Note that the progressbar role is usually attached to indicators that proceed without
user intervention. However, as of Aria 1.1 it remains the closest semantical equivalent
to the kind of indicator discussed above. In the upcoming Aria 1.2, the meter role may
provide an alternative to this technqiue.

Limitations

Not all screenreaders will announce the live region. This is because by specification live
regions need only be monitored against an accessible name, which does not change
here. If that is an issue, you can give the progress bar an aria-label in place of the
valuemin, valuemax and valuenow tuple, and update the label instead – although you
have to come up with the phrasing for the announcement yourself.

That said, iOS VoiceOver will not, in turn, respect that aria-label change due to a bug in
Apple’s VO engine. The most robust solution, therefore, is to use a visually hidden
textContent inside the live region and have It, instead, describe the progress value.
One conjectures, therefore, that most people will simply go with the standard
valuemin and valuemax attributes, and accept the compatibility comprises this may
entail.

Requirement 2: Focus Order Follows Service Design

Demo

The picture below depicts by numbers in which order the different parts of the demo
carousel receive focus when navigated with a keyboard and the tabulator (TAB) key.
Note that this order is not the same as the DOM order (shown in the second picture
below), as the TAB key will only focus interactive elements.

The tablist receives focus based on the following rules:

• Focus is placed on the selected thumbnail/tab, if there is one in the visible list

• Otherwise, focus is placed on the first or last thumbnail depending on whether
the left or right hand scroll button has been focused last. That is, the user will
enter the list from the direction they are navigating.

• Once focus is placed on a tab, the user can move between tabs by using
left/right arrow keys. Enter/Space will select a tab.

This tablist focus order and keyboard navigation mode mimics the common “manual
selection” mode of the tablist pattern; for more information, see the tablist
implementation guide.

Discussion

This focus ordering has as its notable feature the image switch buttons’ placement:
They are situated before and after the tablist and its scroll buttons, “far away” from
the content panel. On one hand, this makes moving focus from one image switch
button to the next cumbersome, as the entire carousel lies in between; on the other
hand, the tablist now has its scroll buttons right beside it.

This makes the list easy to operate even without mouse or touch. But will that help the
user more than the image switch buttons’ separation hinders her? That is a service
design decision with no strict right or wrong answer.

While the above choice, then, is hamrless, the following focus order would not work
given that it breaks the tablist pattern for screen readers and other assistive
technology:

• Place the image switch buttons between selected and next tab – that is,
“wedge” (in focus order) the content panel in the middle of the tablist.

• How would the list now be defined? And if the solution is to make it a toggle
button list, what happens when the selected image is not in the segment that
is currently shown – where can it be accessed? This pattern, clearly, will not
work.

General Implementation Notes

• Focus order is dictated by the order in which the elements lie in the DOM. It is
neither affected by, nor has any bearing on, the visual layout.

• Decide the focus order based on what serves best a user who operates the
element using only a keyboard. That is, you need not follow the visual layout
strictly if another order is more effective.

• Arrange the element DOM according to the desired focus order, not according
to an arbitrary visual layout. Instead, control the layout with CSS wherever
possible.

Requirement 3: Assistive Technology Reading Order

Demo

The above picture illustrates the DOM order employed in the demo carousel.
Compared to the keyboard focus order, it includes all the element parts, as all DOM
nodes are exposed to assistive technology. The screenreader will focus all page
content unless a tag is empty or hidden.

Noteworthy in this diagram is the location of the content panel. Since this is a tablist
pattern, the panel follows immediately after the tabs – it cannot be in any other place.
That requirement, consequently, pushes the right-hand scroll button onto the other
side of the content panel – a propensity that may feel out of place for visual users but
makes sense to a screenreader user who is unperturbed by the visual alignment of
content and is solely interested in the correct semantical placement of each element.
That is, after a tab list there always must be a tab content panel.

It follows that if one were to deviate from this order, one would have to dispense with
the tablist and go for a toggle button list instead. That would not be incorrect, as
discussed in the first chapter, but all the other parts of the design – keyboard focus
order, technical definitions – would have to be reviewed against that revision, so it
would not be a trivial drop-in-place change.

General Implementation Notes

If you employ a tablist/toggle button list (including clickable dots / little circles, which
will likely number in that category as well), consider whether you can make the entire
list available to keyboard users and assistive technology, or whether having a scrollable
list, like above, still works better.

That is, even as the list may be visually segmented, it can remain unsegmented
technically and so be navigable from one end to the other without the user having to
click the scroll buttons.

The list can simply update its scroll position as the focus travels along.

• Benefit: A simpler focus order and no need to expose the scroll controls to
keyboard and assistive technology. The carousel is easier to use.

• Drawbacks: If the list is too long, it is no longer easy to navigate from a selected
item to its content panel.

Moreover, the carousel/slider will form a barrier on the web page hindering
navigation, as the user must browse the entire list inside the carousel just to
pass it even when they are not interested in the carousel itself. A separate skip
link may need to be added before the carousel.

→ If the list length is more than 10 or so items, it is better to not flatten it out
as a single list but to segment it as parts between which the user must scroll.

An exception might be a carousel that hosts essential content, such as product
links that are not available elsewhere on the page. In that case, one might
prefer to flatten out the list to make the page easier to understand, the list’s
length notwithstanding.

Conclusions

Although many sliders and carousels will depart from the list-based structure used in
this document, it seems reasonable to assume most elements of this type share the
overarching requirements laid out above. A persistent feature of these requirements is
that all the parts of the slider must co-align not just in terms of keyboard focus and
reading/DOM order, but also in terms of the roles, states, and even accessible names
of each subcomponent. It is this complexity where every decision impacts every other
decision that makes “perfect” sliders so difficult to build.

In real world projects, few people have the time to create, or even tune, a complex
element like this to that extend. The pragmatist will, rather, decide what the key
service design objective of the element is and work to make that task accessible – and
no more than that.

It is, indeed, the opinion of this guide’s author that unless the carousel is tasked a
critical role on the web page, the development team can safely prioritize visual
keyboard and pointer use over assistive technology when building or adapting a slider.
That is, the element must be accessible, of course, warranting correct names, roles,
and values for all components, but no matter what one does with the element it will
remain difficult to use for screenreader users. There is a lot more return for the time
invested when it is spent on optimizing the element for the users who most benefit
from its inherent visuality: The keyboard and the pointer (mouse, touch) users.

This means, for instance, that you can set the focus order to one that makes visual
keyboard use efficient; this way, both design and implementation are also simplified.

As an example, the demo carousel, although limited in fucntionality, has been focus-
order after this principle, and even though it is therefore not necessarily optimal for
screenreaders, it nonetheless remains easier to use with assistive technologies than
most carousels out there.

	Helsingin saavutettavuusmalli
	Helsinki Model for Accessible Service Design
	Sliders and carousels: Notes on technical implementation

	Slider and Carousel Patterns
	Definition
	Motivation
	Accessibility requirements: Overview
	Requirement 1: Controls have a meaningful name, role, and value
	Scroll / Switch buttons
	Demo
	General Implementation Notes

	Thumbnails
	Demo
	General Implementation Notes
	What about using a long “flat” list that is only visually segmented?

	Panel Content
	Demo
	General Implementation Notes

	Progress indicator
	General Implementation Notes
	Limitations

	Requirement 2: Focus Order Follows Service Design
	Demo
	Discussion

	General Implementation Notes

	Requirement 3: Assistive Technology Reading Order
	Demo
	General Implementation Notes

	Conclusions

